CISCO Academy

Laboratorium - Obserwacja procesu odwzorowania nazw DNS Cele

Część 1: Obserwacja konwersji DNS nazwy URL na adres IP.

Część 2: Obserwacja procesu przeszukiwania nazw DNS, przy pomocy polecenia nslookup dla strony WWW.

Część 3: Obserwacja procesu przeszukiwania DNS, przy pomocy polecenia nslookup dla serwerów email.

Wprowadzenie

System nazw domenowych (DNS) jest uruchamiany wtedy, gdy w polu adresu przeglądarki WWW wpiszemy adres URL, np. http://www.cisco.com.Pierwsza część adresu URL określa jaki protokół będzie używany. Najczęściej spotykane protokoły to: Hypertext Transfer Protocol (HTTP), Hypertext Transfer Protocol over Secure Socket Layer (HTTPS) i File Transfer Protocol (FTP).

DNS zajmuje się drugą częścią adresu URL, którą w podanym przykładzie jest www.cisco.com.DNS tłumaczy nazwę domeny (www.cisco.com) na adres IP, aby umożliwić hostowi źródłowemu dostęp do serwera docelowego. W tym laboratorium zobaczysz jak działa DNS, a także użyjesz polecenia **nslookup** (name server lookup) by uzyskać więcej informacji o DNS.

Wymagane zasoby

1 PC (Windows z dostępem do Internetu)

Część 1: Obserwacja konwersji DNS nazwy URL na adres IP.

- a. Otwórz wiersz polecenia systemu Windows.
- b. W oknie wiersza poleceń wprowadź komendę ping oraz adres URL organizacji ICANN (ang. Internet Corporation for Assigned Names and Numbers) w postaci www.icann.org.ICANN jest organizacją odpowiedzialną za przyznawanie nazw domen internetowych, administrację adresów IP, a także za zarządzanie domenami i serwerami DNS najwyższego poziomu (root).Komputer musi przetłumaczyć ciąg znaków www.icann.org na adres IP, dzięki czemu będzie wiedział, gdzie przesłać pakiety ICMP (Internet Control Message Protocol).

Pierwsza linia odpowiedzi pokazuje adres **www.icann.org** przetłumaczony przez DNS na adres IP. Powinieneś być w stanie zobaczyć efekt działania DNS nawet, jeśli twoja organizacja posiada zaporę ogniową, która blokuje pakiety wysyłane przez program ping lub jeśli serwer docelowy uniemożliwia skuteczny test ping swojego serwera WWW.

Uwaga: Jeśli nazwa domeny jest rozpoznawana na adres IPv6, użyj polecenia **ping -4 www.icann.org**, aby przetłumaczyć na adres IPv4 w razie potrzeby.

Zanotuj adres IP strony www.icann.net.

- c. Wpisz adresy IPv4 z kroku b w przeglądarce internetowej zamiast adresu URL. Wpisz https://192.0.32.7 w przeglądarce internetowej. Jeśli Twój komputer ma adres IPv6, możesz wprowadzić adres IPv6. https://[2620:0:2d0:200::7] w przeglądarce internetowej.
- d. Zauważ, iż wyświetlona została strona domowa organizacji ICANN bez użycia DNS.

Większości ludzi dużo łatwiej przychodzi zapamiętywanie słów niż liczb. Jeśli powiesz komuś, aby udał się na stronę **www.icann.org**, istnieje duża szansa, że ta osoba ją zapamięta. Natomiast jeśli poprosisz

ją o odwiedzenie strony o adresie 192.0.32.7, zapamiętanie takiego ciągu cyfr będzie kłopotliwe. Jednakże komputery przetwarzają liczby, a nie słowa. DNS jest procesem tłumaczenia słów na postać liczbową. Dodatkowo, zachodzi jeszcze drugi proces tłumaczenia. Ludzie operują na liczbach w systemie dziesiętnym. Komputery natomiast, operują liczbami w systemie binarnym (dwójkowym).Adres IP w systemie dziesiętnym w postaci 192.0.32.7, w systemie binarnym zapiszemy jako: 11000000.00000000.00100000.00000111.Co się stanie, jeżeli skopiujesz adres IP w systemie binarnym w pole adresu przeglądarki WWW?

e. W wierszu poleceń wpisz ping www.cisco.com.

Uwaga: Jeśli nazwa domeny jest odwzorowana na adres IPv6, użyj polecenia **ping -4 www.cisco.com**, aby przetłumaczyć na adres IPv4.

C:\>ping www.cisco.com

C:\>ping -4 www.cisco.com

Czy podczas testowania www.cisco.com otrzymujesz ten sam adres IP co w przykładzie? Wyjaśnij.

Wpisz w przeglądarce internetowej adres IP, który uzyskałeś podczas wysłania żądania ping do strony www.cisco.com.Czy wyświetla się strona internetowa? Wyjaśnij.

Część 2: Obserwacja procesu przeszukiwania DNS, przy pomocy polecenia nslookup dla strony WWW.

a. W wierszu poleceń wpisz komendę nslookup. Twój wynik będzie inny niż na przykładzie.

C:\>nslookup

Podaj jaki jest domyślny, wykorzystywany serwer DNS?

b. Zwróć uwagę na zmianę znaku zachęty do postaci (>). To jest znak zachęty polecenia **nslookup**. W tym trybie możesz wprowadzać polecenia związane z DNS.

Wprowadź ?, aby zobaczyć listę możliwych poleceń, które możesz używać w trybie nslookup.

c. W trybie nslookup, za znakiem zachęty wpisz www.cisco.com.

```
>www.cisco.com
Default Server: one.one.one
Address: 1.1.1.1
Non-authoritative answer:
Name: e2867.dsca.akamaiedge.net
Addresses: 2600:1404:a:395::b33
2600:1404:a:38e:::b33
172.230.155.162
Aliases: www.cisco.com
www.cisco.com.akadns.net
wwwds.cisco.com.edgekey.net
wwwds.cisco.com.edgekey.net.globalredir.akadns.net
```

Jaki adres IPv4 został wyświetlony?

Uwaga: Adres IP z twojej lokalizacji najprawdopodobniej będzie inny, ponieważ firma Cisco używa serwerów lustrzanych położonych w różnych częściach świata.

Czy jest to ten sam adres IP, który został wyświetlony w wyniku działania polecenia ping?

Pod adresami, oprócz adresu IP 172.230.155.162, znajdują się następujące numery: 2600:1404:a:395::b33 i 2600:1404:a:38e::b33.Do czego one służą?

d. W wierszu nslookup wpisz adres IP serwera WWW Cisco, który właśnie został znaleziony. Kiedy nie znasz URL, możesz użyć polecenia **nslookup** by na podstawie adresu IP otrzymać nazwę domeny internetowej.

>172.230.155.162 Default Server: one.one.one Address: 1.1.1.1

Name: a172-230-155-162.deploy.static.akamaitechnologies.com Address: 172.230.155.162

Możesz użyć narzędzia **nslookup** do tłumaczenia nazw domen internetowych na adresy IP. Możesz również używać go do tłumaczenia adresów IP na nazwy domen.

Korzystając z narzędzia **nslookup**, zapisz adresy IP powiązane z **www.google.com**.

Część 3: Obserwacja procesu odwzorowania DNS, przy pomocy polecenia nslookup dla serwerów e-mail.

a. Za znakiem zachęty nslookup, wpisz set type=mx by nslookup identyfikował serwery pocztowe.

>set type=mx

b. At the nslookup prompt, type cisco.com.

```
>cisco.com
Serwer: one.one
Address: 1.1.1.1
Non-authoritative answer:
cisco.com MX preference = 20, mail exchanger = rcdn-mx-01.cisco.com
cisco.com MX preference = 30, mail exchanger = aer-mx-01.cisco.com
cisco.com MX preference = 10, mail exchanger = alln-mx-01.cisco.com
```

Podstawową regułą przy projektowaniu sieci jest nadmiarowość (skonfigurowanych jest więcej niż jeden serwer pocztowy).W ten sposób, jeśli jeden z serwerów pocztowych jest niedostępny, komputer próbuje skontaktować się z kolejnym. Administratorzy poczty przy pomocy parametru **MX preference** określają, który serwer pocztowy ma być używany jako pierwszy. Serwer pocztowy z najniższą wartością **MX preference** jest używany jako pierwszy. Bazując na powyższych danych, wskaż który serwer pocztowy zostanie użyty jako pierwszy, przy wysłaniu wiadomości e-mail do cisco.com?

c. Za znakiem zachęty nslookup, wpisz exit, by powrócić do standardowego wiersza poleceń.

d. W wierszu poleceń wpisz ipconfig /all.

Wypisz adresy wszystkich serwerów DNS, których używa twoja szkoła.

Pytania do przemyślenia

Jaki jest główny cel systemu DNS?