

Laboratorium - Konfiguracja zabezpieczeń przełącznika

Topologia sieci

Tabela adresowania

Urządzenie	Interfejs / VLAN	Adres IP	Maska podsieci
R1	G0/0/1	192.168.10.1	255.255.255.0
	Loopback 0	10.10.1.1	255.255.255.0
S1	VLAN 10	192.168.10.201	255.255.255.0
S2	VLAN 10	192.168.10.202	255.255.255.0
Komputer A	karta sieciowa	DHCP	255.255.255.0
Komputer B	karta sieciowa	DHCP	255.255.255.0

Cele

Część 1: Konfiguracja urządzeń sieciowych

- Wykonaj okablowanie sieci.
- Skonfiguruj R1.
- Skonfiguruj i sprawdź podstawowe ustawienia przełącznika.

Część 2: Konfigurowanie sieci VLAN na przełącznikach.

- Skonfiguruj VLAN 10.
- Skonfiguruj SVI dla VLAN 10.
- Skonfiguruj VLAN 333 z nazwą Native na S1 i S2.
- Skonfiguruj VLAN 999 z nazwą ParkingLot na S1 i S2.

Część 3: Konfiguracja zabezpieczeń przełącznika.

- Zaimplementuj trunki 802.1Q.
- Skonfiguruj porty dostępu.
- Zabezpiecz i wyłącz nieużywane porty przełączników.
- Dokumentuj i zaimplementuj funkcje zabezpieczeń portów.
- Zaimplementuj zabezpieczenia DHCP snooping.
- Zaimplementuj PortFast i BPDU guard.
- Sprawdź łączność typu end-to-end.

Wprowadzenie

To obszerne laboratorium, w którym przerobiono wcześniej omówione funkcje zabezpieczeń warstwy 2.

Uwaga: Routery używane w laboratoriach CCNA to Cisco 4221 z Cisco IOS XE wydanie 16.9.3 (obraz universalk9). Przełączniki używane w laboratoriach to Cisco Catalyst 2960 z Cisco IOS wydanie 15.0 (2) (obraz lanbasek9). Można używać Innych routerów lub przełączników oraz wersji Cisco IOS. Zależnie od modelu urządzenia i wersji systemu IOS, dostępne polecenia i wyniki ich działania mogą się różnić od prezentowanych w niniejszej instrukcji. Przejrzyj tabelę podsumowującą interfejsy routera w celu określenia poprawnych identyfikatorów interfejsów.

Uwaga: Upewnij się, że konfiguracje przełączników zostały zresetowane oraz nie mają konfiguracji startowych. Jeśli nie jesteś pewien, to poproś o pomoc instruktora.

Wymagane zasoby

- 1 router (Cisco 4221 z uniwersalnym obrazem Cisco IOS XE Release 16.9.3 lub porównywalnym)
- 2 przełączniki (Cisco 2960 z Cisco IOS Release 15.0(2) image lanbasek9 lub porównywalny)
- 2 komputery PC (Windows z emulatorem terminala takim jak Tera Term)
- Kable konsolowe do konfiguracji urządzeń Cisco przez porty konsolowe
- Kable Ethernet zgodnie z przedstawioną topologią

Instrukcje

Część 1: Konfiguracja urządzeń sieciowych

Krok 1: Wykonaj okablowanie sieci.

- a. Zbuduj sieć zgodnie z topologią.
- b. Zainicjuj urządzenia.

Krok 2: Skonfiguruj R1.

a. Załaduj następujący skrypt konfiguracyjny na R1.

```
enable
configure terminal
hostname R1
no ip domain lookup
ip dhcp excluded-address 192.168.10.1 192.168.10.9
ip dhcp excluded-address 192.168.10.201 192.168.10.202
1
ip dhcp pool Students
 network 192.168.10.0 255.255.255.0
 default-router 192.168.10.1
 domain-name CCNA2.Lab-11.6.1
I.
interface Loopback0
 ip address 10.10.1.1 255.255.255.0
!
interface GigabitEthernet0/0/1
 description Link to S1 Port 5
 ip dhcp relay information trusted
 ip address 192.168.10.1 255.255.255.0
 no shutdown
1
line con 0
 logging synchronous
 exec-timeout 0 0
```

b. Sprawdź bieżącą konfigurację na R1 za pomocą następującego polecenia:

```
R1# show ip interface brief
```

c. Sprawdź adresowanie IP i czy interfejsy są w stanie up / up (rozwiąż problemy w razie potrzeby).

Krok 3: Skonfiguruj i sprawdź podstawowe ustawienia przełącznika.

- a. Skonfiguruj nazwę hosta dla przełączników S1 i S2.
- b. Zapobieganie niepożądanym zapytaniom DNS na obu przełącznikach.
- c. Skonfiguruj opisy interfejsów dla portów używanych w S1 i S2.
- d. Ustaw bramę domyślną sieci VLAN zarządzania na 192.168.10.1 na obu przełącznikach.

Część 2: Skonfiguruj sieci VLAN na przełącznikach.

Krok 1: Skonfiguruj VLAN 10.

Dodaj VLAN 10 do S1 i S2 i nazwij go Management.

Krok 2: Skonfiguruj SVI dla VLAN 10.

Skonfiguruj adres IP zgodnie z tabelą adresowania dla SVI dla VLAN 10 na S1 i S2. Włącz interfejsy SVI i podaj opis interfejsu.

Krok 3: Skonfiguruj VLAN 333 z nazwą Native na S1 i S2.

Krok 4: Skonfiguruj VLAN 999 z nazwą ParkingLot na S1 i S2.

Część 3: Konfiguracja zabezpieczeń przełącznika.

Krok 1: Zaimplementuj trunki 802.1Q.

- a. Na obu przełącznikach skonfiguruj trunk na F0/1, aby używał sieci VLAN 333 jako natywnej sieci VLAN.
- b. Sprawdź, czy trunk jest skonfigurowany na obu przełącznikach.
 - S1# show interface trunk

```
Port Mode Encapsulation Status Native vlan
Fa0/1 on 802.1q trunking 333
```

Port Vlans allowed on trunk Fa0/1 1-4094

Port Vlans allowed and active in management domain Fa0/1 1,10,333,999 $\,$

```
Port Vlans in spanning tree forwarding state and not pruned Fa0/1 1,10,333,999
```

S2# show interface trunk

```
Port Mode Encapsulation Status Native vlan
Fa0/1 on 802.1q trunking 333
```

Port Vlans allowed on trunk Fa0/1 1-4094

Port Vlans allowed and active in management domain Fa0/1 1,10,333,999

```
Port Vlans in spanning tree forwarding state and not pruned Fa0/1 1,10,333,999
```

- c. Wyłącz negocjacje DTP na F0/1 na S1 i S2.
- d. Sprawdź za pomocą polecenia show interfaces.

```
S1# show interfaces f0/1 switchport | include Negotiation
Negotiation of Trunking: Off
```

S2# show interfaces f0/1 switchport | include Negotiation Negotiation of Trunking: Off

Krok 2: Skonfiguruj porty dostępu.

- a. Na S1 skonfiguruj F0/5 i F0/6 jako porty dostępu skojarzone z siecią VLAN 10.
- b. Na S2 skonfiguruj F0/18 jako port dostępu skojarzony z siecią VLAN 10.

Krok 3: Zabezpiecz i wyłącz nieużywane porty przełączników.

- a. Na S1 i S2 przenieś nieużywane porty z sieci VLAN 1 do sieci VLAN 999 i wyłącz nieużywane porty.
- b. Sprawdź, czy nieużywane porty są wyłączone i skojarzone z siecią VLAN 999, wydając polecenie show .
 S1# show interfaces status

```
Port Name Status Vlan Duplex Speed Type
Fa0/1 Link to S2 connected trunk a-full a-100 10/100BaseTX
Fa0/2 disabled 999 auto auto 10/100BaseTX
Fa0/3 disabled 999 auto auto 10/100BaseTX
Fa0/4 disabled 999 auto auto 10/100BaseTX
Fa0/5 Link to R1 connected 10 a-full a-100 10/100BaseTX
Fa0/6 Link to PC-A connected 10 a-full a-100 10/100BaseTX
Fa0/7 disabled 999 auto auto 10/100BaseTX
Fa0/8 disabled 999 auto auto 10/100BaseTX
Fa0/9 disabled 999 auto auto 10/100BaseTX
Fa0/10 disabled 999 auto auto 10/100BaseTX
<output omitted>
S2# show interfaces status
Port Name Status Vlan Duplex Speed Type
Fa0/1 Link to S1 connected trunk a-full a-100 10/100BaseTX
Fa0/2 disabled 999 auto auto 10/100BaseTX
Fa0/3 disabled 999 auto auto 10/100BaseTX
```

```
<output omitted>
Fa0/14 disabled 999 auto auto 10/100BaseTX
Fa0/15 disabled 999 auto auto 10/100BaseTX
Fa0/16 disabled 999 auto auto 10/100BaseTX
Fa0/17 disabled 999 auto auto 10/100BaseTX
Fa0/18 Link to PC-B connected 10 a-full a-100 10/100BaseTX
Fa0/19 disabled 999 auto auto 10/100BaseTX
Fa0/20 disabled 999 auto auto 10/100BaseTX
Fa0/21 disabled 999 auto auto 10/100BaseTX
Fa0/22 disabled 999 auto auto 10/100BaseTX
Fa0/23 disabled 999 auto auto 10/100BaseTX
Fa0/24 disabled 999 auto auto 10/100BaseTX
Gi0/1 disabled 999 auto auto 10/100DBaseTX
Gi0/2 disabled 999 auto auto 10/100DBaseTX
```

Krok 4: Dokumentuj i zaimplementuj funkcje zabezpieczeń portów.

Interfejsy F0/6 na S1 i F0/18 na S2 są skonfigurowane jako porty dostępu. W tym kroku można również skonfigurować zabezpieczenia portów na tych dwóch portach dostępu.

a. Na S1 wydaj polecenie **show port-security interface f0/6**, aby wyświetlić domyślne ustawienia zabezpieczeń portu dla interfejsu F0/6. Zanotuj swoje odpowiedzi w poniższych rubrykach.

Domyślna konfiguracja zabezpieczeń portu			
Funkcja	Ustawienie domyślne		
Zabezpieczenie portu			
Maksymalna liczba bezpiecznych adresów MAC			
Tryb naruszenia			
Czas przedawnienia			
Rodzaj przedawnienia			
Przedawnienie bezpiecznego adresu statycznego			
Opcja Sticky adresów MAC			

b. Na S1, włącz zabezpieczenia portu na F0/6 z następującymi ustawieniami:

- Maksymalna liczba bezpiecznych adresów MAC: 3
- Rodzaj naruszenia: restrict
- o Czas przedawnienia: 60 min
- o Rodzaj przedawnienia: brak aktywności
- c. Sprawdź zabezpieczenia portu F0/6 na S1.

```
S1# show port-security interface f0/6
Port Security : Enabled
Port Status : Secure-up
Violation Mode : Restrict
Aging Time : 60 mins
Aging Type : Inactivity
SecureStatic Address Aging : Disabled
Maximum MAC Addresses : 3
Total MAC Addresses : 1
Configured MAC Addresses : 0
Sticky MAC Addresses : 0
Last Source Address:Vlan : 0022.5646.3411:10
Security Violation Count : 0
S1# show port-security address
            Secure Mac Address Table
_____
Vlan Mac Address Type Ports Remaining Age
                                                       (mins)
---- ------ ------ -----
 10 0022.5646.3411 SecureDynamic Fa0/6 60 (I)
_____
Total Addresses in System (excluding one mac per port) : 0
```

Max Addresses limit in System (excluding one mac per port) : 8192

- d. Enable port security for F0/18 on S2. Skonfiguruj port, aby automatycznie dodawać adresy MAC wyuczone na porcie do bieżącej konfiguracji.
- e. Skonfiguruj następujące ustawienia zabezpieczeń portu f0/18 na S2:
 - Maksymalna liczba bezpiecznych adresów MAC: 2
 - Rodzaj naruszenia: Protect
 - Czas przedawnienia: 60 min
- f. Sprawdź zabezpieczenia portu F0/18 na S2.

S2# show port-security interface f0/18

```
Port Security : Enabled
Port Status : Secure-up
Violation Mode : Protect
Aging Time : 60 mins
Aging Type : Absolute
SecureStatic Address Aging : Disabled
Maximum MAC Addresses : 2
Total MAC Addresses : 1
Configured MAC Addresses : 0
Sticky MAC Addresses : 0
Last Source Address:Vlan : 0022.5646.3413:10
Security Violation Count : 0
```

S2# show port-security address

Krok 5: Zaimplementuj zabezpieczenia DHCP snooping.

- a. W przypadku S2 włącz DHCP snooping i skonfiguruj DHCP snooping w sieci VLAN 10.
- b. Skonfiguruj port trunk na S2 jako port zaufany.
- c. Ogranicz niezaufane port F0/18 na S2 do pięciu pakietów DHCP na sekundę.
- d. Sprawdź DHCP snooping na S2.

```
S2# show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs:
10
DHCP snooping is operational on following VLANs:
10
DHCP snooping is configured on the following L3 Interfaces:
```

C:\Users\Student> **ipconfig /release**

C:\Users\Student> **ipconfig /renew**

f. Zweryfikuj powiązanie DHCP snooping za pomocą polecenia show ip dhcp snooping binding.

```
S2# show ip dhcp snooping binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
00:50:56:90:D0:8E 192.168.10.11 86213 dhcp-snooping 10 FastEthernet0/18
Total number of bindings: 1
```

Krok 6: Zaimplementuj PortFast i BPDU guard.

- a. Skonfiguruj PortFast na wszystkich portach dostępu, które są używane na obu przełącznikach.
- b. Włącz ochronę BPDU na portach dostępowych S1 i S2 VLAN 10 podłączonych do PC-A i PC-B.
- c. Sprawdź, czy BPDU Guard i PortFast są włączone na odpowiednich portach.

```
S1# show spanning-tree interface f0/6 detail
Port 8 (FastEthernet0/6) of VLAN0010 is designated forwarding
Port path cost 19, Port priority 128, Port Identifier 128.6.
<output omitted for brevity>
Number of transitions to forwarding state: 1
The port is in the portfast mode
Link type is point-to-point by default
Bpdu guard is enabled
BPDU: sent 128, received 0
```

Krok 7: Zweryfikuj komunikację end-to-end.

Sprawdź łączność PING między wszystkimi urządzeniami w tabeli adresowania IP. Jeśli testy ping się nie powiedzą, może być konieczne wyłączenie zapory na hostach komputera.

Pytania refleksyjne

- 1. W odniesieniu do zabezpieczeń portów na S2, dlaczego nie ma wartości zegara przedawnienia w minutach, gdy skonfigurowano opcję uczenia Sticky?
- 2. W odniesieniu do zabezpieczeń portów na S2, jeśli załadujesz skrypt running-config na S2, dlaczego PC-B na porcie 18 nigdy nie otrzyma adresu IP przez DHCP?
- 3. W odniesieniu do zabezpieczeń portu, jaka jest różnica między bezwzględnym typem przedawnienia i typem przedawnienia w wyniku braku aktywności?