CISCO Academy

Packet Tracer – Badanie implementacji sieci VLAN

Tabela adresowania

Urządzenie	Interfejs	Adres IP	Maska podsieci	Brama domyślna
S1	VLAN 99	172.17.99.31	123.0.0.0	nd.
S2	VLAN 99	172.17.99.32	255.255.255.0	nd.
S3	VLAN 99	172.17.99.33	255.255.255.0	nd.
PC1	karta sieciowa	172.17.10.21	255.255.255.0	172.17.10.1
PC2	karta sieciowa	172.17.20.22	255.255.255.0	172.17.20.1
PC3	karta sieciowa	172.17.30.23	255.255.255.0	172.17.30.1
PC4	karta sieciowa	172.17.10.24	255.255.255.0	172.17.10.1
PC5	karta sieciowa	172.17.20.25	255.255.255.0	172.17.20.1
PC6	karta sieciowa	172.17.30.26	255.255.255.0	172.17.30.1
PC7	karta sieciowa	172.17.10.27	255.255.255.0	172.17.10.1
PC8	karta sieciowa	172.17.20.28	255.255.255.0	172.17.20.1
PC9	karta sieciowa	172.17.30.29	255.255.255.0	172.17.30.1

Cele

Część 1: Obserwowanie ruchu rozgłoszeniowego w sieci z implementacją VLAN

Część 2: Obserwowanie ruchu rozgłoszeniowego w sieci bez VLAN

Wprowadzenie

W tym ćwiczeniu będziesz obserwować sposób przesyłania ruchu rozgłoszeniowego poprzez przełączniki dla przypadku bez zastosowania sieci VLAN, a także dla przypadku z zastosowaniem sieci VLAN.

Instrukcje

Część 1: Zaobserwuj ruch rozgłoszeniowy w sieci z implementacją VLAN

Krok 1: Wykonaj test ping z PC1 do PC6.

- a. Poczekaj aż lampki kontrolne łączy zaświecą się na zielono. Kliknij **Fast Forward Time** aby przyspieszyć ten proces.
- b. Kliknij zakładkę Simulation a potem kliknij Add Simple PDU. Kliknij PC1, a następnie kliknij PC6.
- c. Kliknij Capture/Forward, aby obserwować proces krok po kroku. Zaobserwuj w jaki sposób żądania ARP są przesyłane przez sieć. Gdy pojawi się okno z komunikatem Buffer Full, kliknij przycisk View Previous Events.

Czy polecenia ping zostały wykonane pomyślnie? Wyjaśnij.

Zaobserwuj w panelu symulacji, dokąd S3 wysłał pakiet po otrzymaniu go?

W normalnej sytuacji, gdy przełącznik otrzymuje ramkę rozgłoszeniową na jednym ze swoich portów, rozgłasza ją przez pozostałe swoje porty. Zauważ, że **S2** wysyła żądanie ARP tylko przez port Fa0/1 do **S1**. Zauważ również, że **S3** wysyła żądanie ARP tylko przez port Fa0/11 do **PC4**. **PC1** i **PC4** należą do VLAN 10. **PC6** należy do VLAN 30. Ponieważ ruch rozgłoszeniowy związany jest z siecią VLAN, to **PC6** nigdy nie otrzyma żądania ARP z **PC1**. Ponieważ **PC4** nie jest hostem docelowym, odrzuca on żądanie ARP. Test ping z **PC1** nie powiódł się, ponieważ **PC1** nigdy nie otrzyma odpowiedzi ARP.

Krok 2: Wykonaj polecenie ping z PC1 do PC4.

- a. Kliknij przycisk **New** znajdujący się pod rozwijaną listą Scenario 0. Kliknij **Add Simple PDU**, aby utworzyć pakiet ping (po prawej stronie Packet Tracera) z **PC1** do **PC4**.
- Kliknij Capture/Forward, aby obserwować proces krok po kroku. Zaobserwuj w jaki sposób żądania ARP są przesyłane przez sieć. Gdy pojawi się okno z komunikatem Buffer Full, kliknij przycisk View Previous Events.

Czy polecenia ping zostały wykonane pomyślnie? Wyjaśnij.

c. Prześledź panel symulacji.

Kiedy pakiet osiągnął S1, dlaczego również przekazuje pakiet do PC7?

Część 2: Obserwowanie ruchu rozgłoszeniowego w sieci bez VLAN

Krok 1: Skasuj konfiguracje oraz bazy danych VLAN na wszystkich trzech przełącznikach.

- a. Powróć do trybu Realtime.
- b. Skasuj konfigurację startową na wszystkich trzech przełącznikach.

Która komenda służy do kasowania konfiguracji startowej w przełącznikach?

Jak nazywa się plik zawierający bazę danych VLAN w przełącznikach?

c. Skasuj plik bazy danych VLAN na wszystkich trzech przełącznikach.

Która komenda służy do kasowania bazy danych VLAN w przełącznikach?

Krok 2: Przeładuj przełącznik.

Aby zrestartować przełączniki, użyj polecenia **reload** w trybie uprzywilejowanym EXEC. Poczekaj aż lampki kontrolne zaświecą się na zielono. Kliknij **Fast Forward Time** aby przyspieszyć ten proces.

Krok 3: Kliknij Capture/Forward aby wysłać żądania ARP oraz ping.

- a. Po ponownym uruchomieniu przełączników i zmianie ich stanu kontrolek łączy na kolor zielony, sieć gotowa jest do przesyłania ruchu ARP i ping.
- b. Aby powrócić do scenariusza Scenario 0, wybierz Scenario 0 z rozwijanej listy.
- c. W trybie Simulation, kliknij przycisk Capture/Forward, aby prześledzić cały proces. Zauważ, że teraz przełączniki wysyłają żądania ARP przez wszystkie swoje porty za wyjątkiem portu, z którego to żądanie otrzymały. To domyślne zachowanie się przełączników pokazuje w jaki sposób sieci VLAN mogą zwiększyć wydajność sieci. Ruch rozgłoszeniowy ograniczany jest do danej sieci VLAN. Gdy pojawi się okno z komunikatem Buffer Full, kliknij przycisk View Previous Events.

Pytania refleksyjne

- 1. Jeśli komputer w sieci VLAN 10 wysyła wiadomość rozgłoszeniową, które urządzenia go otrzymują?
- 2. Jeśli komputer w sieci VLAN 20 wysyła wiadomość rozgłoszeniową, które urządzenia go otrzymują?
- 3. Jeśli komputer w sieci VLAN 30 wysyła wiadomość rozgłoszeniową, które urządzenia go otrzymują?
- 4. Co się dzieje z ramkami wysłanymi z komputera w sieci VLAN 10 do komputera w sieci VLAN 30?
- 5. Pod względem portów, jakie są domeny kolizyjne na przełączniku?
- 6. Pod względem portów, jakie są domeny rozgłoszeniowe na przełączniku?