CISCO Academy

Packet Tracer - Konfiguracja DHCPv4

Tabela adresowania

Urządzenie	Interfejs	Adres IPv4	Maska podsieci	Brama domyślna
R1	G0/0	192.168.10.1	255.255.255.0	nd.
	S0/0/0	10.1.1.1	255.255.255.252	nd.
R2	G0/0	192.168.20.1	255.255.255.0	nd.
	G0/1	Przypisany przez DHCP	Przypisany przez DHCP	nd.
	S0/0/0	10.1.1.2	255.255.255.252	nd.
	S0/0/1	10.2.2.2	255.255.255.252	nd.
R3	G0/0	192.168.30.1	255.255.255.0	nd.
	S0/0/1	10.2.2.1	255.255.255.0	nd.
PC1	karta sieciowa	Przypisany przez DHCP	Przypisany przez DHCP	Przypisany przez DHCP
PC2	karta sieciowa	Przypisany przez DHCP	Przypisany przez DHCP	Przypisany przez DHCP
Serwer DNS	karta sieciowa	192.168.20.254	255.255.255.0	192.168.20.1

Cele

Część 1: Konfigurowanie routera jako serwera DHCP

Część 2: Konfigurowanie przekazywania komunikatów DHCP

Część 3: Konfigurowanie routera jako klienta DHCP

Część 4: Testowanie DHCP i weryfikacja komunikacji w sieci

Scenariusz

Dedykowany serwer DHCP jest skalowalny i stosunkowo łatwy do zarządzania, lecz posiadanie w każdym miejscu sieci osobnego serwera może być zbyt kosztowne. W celu świadczenia usług DHCP router Cisco może być skonfigurowany bez potrzeby używania serwera dedykowanego. Jako technik sieciowy w Twojej firmie przydzielono Ci zadanie skonfigurowania routera Cisco jako serwera DHCP. Dodatkowo musisz również skonfigurować router brzegowy pełniący rolę klienta DHCP tak, aby otrzymał on adres IP z sieci dostawcy ISP.

Instrukcje

Część 1: Konfigurowanie routera jako serwera DHCP

Krok 1: Skonfiguruj adresy IPv4 wykluczone z puli DHCP.

Adresy, które zostały statycznie przypisane do urządzeń w sieciach muszą być wyłączone z puli DHCP aby używać DHCP w tej sieci. Pozwala to uniknąć błędów związanych z duplikatami adresów IP. W takim przypadku adresy IP interfejsów LAN R1 i R3 muszą być wyłączone z DHCP. Ponadto dziewięć innych adresów jest wykluczonych do statycznego przypisywania innym urządzeniom, takich jak serwery i interfejsy zarządzania urządzeniami.

a. Skonfiguruj R2 tak, aby wykluczał pierwsze 10 adresów z sieci LAN R1 i R3.

R2(config) # ip dhcp excluded-address 192.168.10.1 192.168.10.10

b. Skonfiguruj R2 tak, aby wykluczał pierwsze 10 adresów z sieci LAN R3.

Krok 2: Utwórz pulę DHCP na R2 dla sieci LAN R1.

a. Utwórz pulę DHCP o nazwie **R1-LAN** (ważna jest wielkość liter).

R2(config) # ip dhcp pool R1-LAN

b. Skonfiguruj pulę DHCP, która będzie zawierała adres sieci, bramę domyślną oraz adres IP serwera DNS.

R2(dhcp-config)# network 192.168.10.0 255.255.255.0 R2(dhcp-config)# default-router 192.168.10.1

R2(dhcp-config)# dns-server 192.168.20.254

Krok 3: Utwórz na R2 pulę DHCP dla sieci LAN R3.

- a. Utwórz pulę DHCP o nazwie R3-LAN (ważna jest wielkość liter).
- b. Skonfiguruj pulę DHCP, która będzie zawierała adres sieci, bramę domyślną oraz adres IP serwera DNS. Zapoznaj się z tablicą adresowania.

Część 2: Konfigurowanie agenta przekazywania DHCP

Krok 1: Skonfiguruj routery R1 i R3 do roli agentów przekazujących komunikaty DHCP.

Aby klienci DHCP mogli uzyskać adres z serwera w innym segmencie sieci LAN, interfejs, do którego są dołączeni klienci, musi zawierać adres pomocniczy wskazujący na serwer DHCP. W takim przypadku hosty na sieciach LAN podłączonych do R1 i R3 będą uzyskiwać dostęp do serwera DHCP skonfigurowanego na R2. Adresy IP interfejsów szeregowych R2 dołączonych do R1 i R3 są używane jako adresy pomocnicze. Ruch DHCP z hostów na sieciach LAN R1 i R3 zostanie przekazany dalej na te adresy i przetwarzany przez serwer DHCP skonfigurowany na R2.

a. Skonfiguruj adres pomocniczy dla interfejsu LAN w R1.

R1(config) # interface g0/0

R1(config-if) # ip helper-address 10.1.1.2

b. Skonfiguruj adres pomocniczy dla interfejsu LAN w R3.

Krok 2: Skonfiguruj hosty, aby otrzymywały informacje adresowania IP z DHCP.

- a. Skonfiguruj hosty PC1 i PC2, aby odbierać swoje adresy IP z serwera DHCP.
- b. Sprawdź, czy hosty otrzymały swoje adresy z prawidłowych puli DHCP.

Część 3: Konfigurowanie routera jako klienta DHCP

Podobnie jak komputer jest w stanie odbierać adres IPv4 z serwera, interfejs routera ma możliwość zrobienia tego samego. Router **R2** musi być skonfigurowany tak, aby odbierać adresowanie od dostawcy usług internetowych.

a. Skonfiguruj interfejs Gigabit Ethernet 0/1 na **R2** tak, aby otrzymywał adresację IP z serwera DHCP i aktywuj go.

```
R2(config)# interface g0/1
R2(config-if)# ip address dhcp
R2(config-if)# no shutdown
```

Uwaga: Użyj funkcji Fast Forward Time, aby przyspieszyć proces.

b. Użyj komendy show ip interface brief aby sprawdzić, czy R2 otrzymał adres IP z serwera DHCP.

Część 4: Testowanie DHCP i weryfikacja komunikacji w sieci

Krok 1: Sprawdź powiązania DHCP.

Krok 2: Sprawdź konfiguracje.

Sprawdź czy PC1 i PC2 mogą teraz wymieniać pakiety ping nawzajem i z wszystkimi innymi urządzeniami.