CISCO Academy

Packet Tracer - Modyfikowanie jednoobszarowego OSPFv2

Tabela adresacji

Urządzenie	Interfejs	Adres IPv4	Maska podsieci	Brama domyślna
R1	G0/0	172.16.1.1	255.255.255.0	nd.
	S0/0/0	172.16.3.1	255.255.255.252	
	S0/0/1	192.168.10.5	255.255.255.252	
R2	G0/0	172.16.2.1	255.255.255.0	nd.
	S0/0/0	172.16.3.2	255.255.255.252	
	S0/0/1	192.168.10.9	255.255.255.252	
	S0/1/0	209.165.200.225	255.255.255.224	
R3	G0/0	192.168.1.1	255.255.255.0	nd.
	S0/0/0	192.168.10.6	255.255.255.252	
	S0/0/1	192.168.10.10	255.255.255.252	
PC1	Karta sieciowa	172.16.1.2	255.255.255.0	172.16.1.1
PC2	Karta sieciowa	172.16.2.2	255.255.255.0	172.16.2.1
PC3	Karta sieciowa	192.168.1.2	255.255.255.0	192.168.1.1
Web Server	Karta sieciowa	64.100.1.2	255.255.255.0	64.100.1.1

Cele

Część 1: Modyfikacja domyślnych ustawień protokołu OSPF

Część 2: Weryfikacja połączeń

Scenariusz

W tym ćwiczeniu protokół OSPF został już skonfigurowany i wszystkie urządzenia końcowe mają ze sobą pełną łączność. Zmodyfikujesz domyślne konfiguracje routingu OSPF, zmieniając interwały Hello i Dead oraz dostosowując szerokość pasma łącza. Następnie sprawdzisz czy łączność w sieci została przywrócona dla wszystkich urządzeń.

Instrukcje

Część 1: Zmodyfikuj domyślne ustawienia OSPF

Krok 1: Sprawdź łączność pomiędzy wszystkimi urządzeniami

Przed rozpoczęciem modyfikacji właściwości protokołu OSPF sprawdź, czy wszystkie komputery mają łączność ze sobą i serwerem WWW.

Krok 2: Dopasuj interwały hello i dead pomiędzy routerami R1 i R2.

a. Wprowadź następujące komendy na routerze R1.

R1(config) # interface s0/0/0

R1(config-if) # ip ospf hello-interval 15

R1(config-if) # ip ospf dead-interval 60

 Po krótkim czasie połączenie OSPF z R2 zakończy się niepowodzeniem, jak pokazano na wyjściu routera.

00:02:40: %OSPF-5-ADJCHG: Process 1, Nbr 209.165.200.225 on Serial0/0/0 from FULL to DOWN, Neighbor Down: Dead timer expired

00:02:40: %OSPF-5-ADJCHG: Process 1, Nbr 209.165.200.225 on Serial0/0/0 from FULL to DOWN, Neighbor Down: Interface down or detached

Obydwie strony na łączu muszą mieć ustawione takie same interwały w celu utrzymania przyległości. Zidentyfikuj interfejs na R2 podłączony do R1. Dostosuj interwały na interfejsie R2, aby pasowały do ustawień **R1**.

Po krótkim czasie powinien zostać wyświetlony komunikat o stanie informujący o ponownym ustanowieniu przylegania OSPF.

```
00:21:52: %OSPF-5-ADJCHG: Process 1, Nbr 192.168.10.5 on Serial0/0/0 from LOADING to FULL, Loading Done
```

Krok 3: Dopasuj ustawienia szerokości pasma na R1.

a. Prześledź trasę pomiędzy komputerem **PC1** i serwerem WWW o adresie 64.100.1.2. Zauważ, że trasa od **PC1** do serwera WWW jest routowana przez **R2**. OSPF preferuje trasy z najniższym kosztem.

```
C:\> tracert 64.100.1.2
```

Tracing route to 64.100.1.2 over a maximum of 30 hops:

1 1 ms 0 ms 8 ms 172.16.1.1 2 0 ms 1 ms 0 ms 172.16.3.2 3 1 ms 9 ms 2 ms 209.165.200.226 4 * 1 ms 0 ms 64.100.1.2

Trace complete.

b. Na interfejsie S0/0/0 routera R1 ustaw szerokość pasma na 64 kb/s. Nie zmieni to aktualnej szybkości transmisji na porcie R1; wartość ta będzie używana tylko do wyliczenia metryki OSPF i wyznaczenia najlepszej trasy.

R1(config-if) # bandwidth 64

c. Prześledź trasę pomiędzy komputerem **PC1** i serwerem WWW o adresie 64.100.1.2. Zauważ, że trasa od **PC1** do serwera WWW jest routowana teraz przez **R3**. OSPF preferuje trasy z najniższym kosztem.

C:\> tracert 64.100.1.2

Tracing route to 64.100.1.2 over a maximum of 30 hops:

1 1 ms 0 ms 3 ms 172.16.1.1 2 8 ms 1 ms 1 ms 192.168.10.6 3 2 ms 0 ms 2 ms 172.16.3.2

```
4 2 ms 3 ms 1 ms 209.165.200.226
5 2 ms 11 ms 11 ms 64.100.1.2
```

Trace complete.

Część 2: Weryfikacja łączności

Sprawdź, czy wszystkie komputery mają łączność ze sobą i serwerem WWW.